這次的講者李翼介紹 Donkey Car 怎麼玩。Donkey Car 是一個機器學習加上馬達控制的綜合型專案,也就是使用者先在車道上使用搖桿控制小車,並且將影像資訊和搖桿資訊記錄下來。再將蒐集到的資料訓練出對應的模型,之後再把訓練好的模型放到小車上試著讓它自走,並持續做蒐集資料、訓練模型、測試小車的動作直到符合預期結果。
Donkey Car 的硬體清單,包含了 Pi 3、車體、相機模組、搖桿以外,還用了冰棍做相機支架,非常有趣。
目前比較難取得的是 RC Car,還要再搭配專用擴充板,不過這都可以再進行改造的。對 Donkey Car 來說,相機模組是唯一的資料輸入來源。
在 Donkey Car 的軟體架構中,包含了認知(Perception)、規劃(Planning)、控制(Control)和資料收集(Data Collection)等步驟。所謂的認知就是自駕車需要取得當前的狀態(state),包括是否正在前進還是後退?如果知道狀態以後,就可以根據條件做規劃,例如左轉、右轉或是避障等。有了規劃結果以後就可以發出控制訊號來控制馬達調整車子動作,最後就是持續把從相機讀進來的影像資料或是搖桿資料給保存下來。
Donkey Car 的核心精神就是使用神經網路將影像和對應的動作做連結,因此選擇適合的模型與調整參數是很重要的。